實際上,關于COD和BOD,很多人也就知道COD是化學需氧量,BOD生化需氧量,還有老師們不下數萬次強調過的用B/C判定水的可生化性,然后就魔性的在大腦里循環 0.3 0.3 0.3 0.3....不過隨著自己經驗的逐漸積累,才發覺自己之前了解的都是些啥呀。深深體會到“紙上得來終覺淺,絕知此事要躬行”的那么一點點真諦。一. 為什么需要BOD與COD無疑,污水中多數污染物是有機物。人類已經發現的有機物有幾千萬種,未發現的不知有多少種。一一表達不現實,有必要用一個簡單易行的統一指標。目前污水最重要的處理方法是生化法特別是好氧法 。用微生物在好氧條件下降解有機物的氧氣消耗來表達有機物濃度,可行且有很強的實戰意義。因此需要BOD。無疑BOD應用無窮長時間來測定,即BODu。這也不現實。由于有實際意義的HRT不會太久,因此可以用幾十天的BOD來近似代替BODu。為避免硝化影響,時間還要再短一些,因此一般使用20日BOD。20日BOD測定周期也很長。目前流行的是5日BOD。據說5日標準是因為英國最長的河流從源頭到入海不超過5日。英國是島國,如果美國也這么定,密蘇里河入??峙乱粋€月吧。因此5日沒有什么特殊的物理意義。下文沒有特殊說明之處,BOD均為5日。為和社會工作周期吻合,好些歐洲國家習慣用7日BOD。5日BOD時間也不短,因此需要更快捷的方法。COD用激烈的化學氧化法,可以相對迅速獲得結果,彌補時間缺陷。高錳酸鉀氧化性強,且自身顏色鮮明,可用作COD方法。高錳酸鉀顏色鮮明,特別適合在低濃度下準確測定,因此在給水領域盛行。日本在污水領域也很流行。(所以日本廢水BOD經常表達得比COD還高,包括生活污水)。重鉻酸鉀在強酸條件下,加熱回流時氧化能力更粗暴,多數場合氧化充分。世界范圍內流行。下文沒有特殊說明之處,COD均為重鉻酸鉀法。在更暴力的反應氛圍下,一把火燒掉有機物,測定氧消耗量或二氧化碳產量,測定更可靠。此即TOD與TOC。明確知道污水中各主要污染物構成與比例,可以根據分子式直接計算,即理論COD。不過實際過程中往往不易實現或沒有必要實現。二. BOD與COD方法、儀器的內在缺陷2.1 BOD方法、儀器內在缺陷BOD測定方法決定了,實際使用水樣只能消耗一部分DO,對應有機物濃度范圍大約是幾個mg/L。有些污染物在這一濃度范圍內生化性不壞,但是實際廢水中因污染物濃度高,產生新的物理、化學、生化性質,導致BOD假陽性。上述性質變化可能是滲透壓、pH、表面性質(有表面活性劑效應的物質超過臨界濃度后影響傳質)等。這類廢水啟動難,但只要反應器內不積累,很容易對付。例1:滲透壓—糖。糖生化性極好,但高濃度糖水的滲透壓高,直接生化性極差。(南方的蜜餞就是用高濃度糖水來保鮮的)。因BOD測定方法缺陷,必須稀釋到幾個ppm水平才能測定,因此滲透壓問題被繞過去了。當然不會有人直接排放這么高濃度的糖水,且即使蜜餞濃度高,進入生化系統后只要糖可以在低濃度下降解,體系中始終不會出現積累滲透壓問題。例2:pH—檸檬酸可直接進入三羧酸循環,生化性遠超過葡萄糖。但到了一定濃度,廢水明顯為酸性,可以放幾個月都不臭。做過油脂工廠廢水的朋友們對酸性緩沖溶液型廢水一定有有印象。當然用上一段所提解決方法也好用。例3:蛋白質變性—甲醛。甲醛測定BOD奇高。但高濃度甲醛別名是福爾馬林,可泡標本!例4:極少數有機物因‘鎖鑰效應’,濃度越高,越不利于降解。大家有興趣不妨查閱專業生物化學。例5:界面性質—洗滌劑。這與BOD測定方法的另外一項內在缺陷有關。BOD測定水樣的DO變化不可以太小,否則測定缺乏重現性。如果真能準確測定ppb級別的DO消耗值,其實直鏈型洗滌劑—LAS的生化性至少不是很差。問題是LAS濃度稍微高一點兒,就達到臨界濃度,改變界面性質,嚴重影響實際生化。例6:咸菜可長期保存,當然也難直接生化。向糖水中加入大量鹽分,測定BOD很高,但持續進入生化系統后,雖然糖可降解,鹽卻幾乎沒有變化,后果是高BOD廢水把微生物腌制成了咸菜。此類廢水特點是:廢水中有一些生化惰性物質,低濃度下不影響生化甚至是微生物必不可少的物質(例如氯離子、硫酸根離子等),一定濃度下影響廢水整體物理、化學性質。與前面的5個例子不同,這類廢水不可能直接用生化法處理,但測定B/C也可能很高。此類廢水算是一種特殊變例。例7:油脂。各位水友可注意過油脂的BOD?生物油脂的生化性至少是不很差,做過屠宰廢水的都知道。可是油脂實際平均降解周期并不短,5日BOD并不高。然而屠宰廢水的處理一般有幾個小時就可以獲得滿意效果,且反應器內不嚴重積累。因為有些有機物可以被微生物先吸附,相當于含在嘴里,雖然消化時間可能像吞吃了羚羊的蟒蛇一樣長,但是—出水沒有羚羊。這一例子對于BOD電極來說是個壞事:SS態有機物如何能被電極迅速測定?初步結論1、 BOD是一個有先天缺陷的測定指標。2、BOD是一個半經驗指標。3、BOD不代表可降解有機物(當然更不代表不可降解有機物)。4、COD也是一個有先天性缺陷的指標,但比BOD可靠性好一些。5、COD經驗性色彩比BOD弱一些。6、COD一般可以代表有機物總量。7、BOD/COD判據在多數場合可用。(如果詢問具體哪些場合,我只能回答:先去練內功)8、COD-BOD作為經驗判據很勉強,甚至不夠作判據,不可用場合比例太大。初級水友要小心。當然理論COD-無窮大或充分大時間段BOD可以作充分判據,但實際中很難獲得這一數據。9、生活污水、食品工業污水使用BOD作工程計算,也可以。化工廢水用BOD來計算各池、各機械風險很大,特別是風量。初級水友小心。各位水友當然還要用BOD、COD。但用的時候最好能思考一下,尤其是難降解場合,不要踩地雷。
BOD(生化需氧量)測定儀作為水質監測的關鍵設備,通過量化微生物分解水中有機物時消耗的溶解氧量,精準評估水體受有機物污染程度,在眾多領域發揮著不可替代的作用。其應用貫穿環境監測、污水處理、工業生產以及科研教學等多個方面,為水環境管理與生態保護提供重要支撐。
BOD(生化需氧量)是衡量水體中可生物降解有機物含量的重要指標,對水質評價、污水處理及環境監測具有重要意義。BOD測定儀作為專門用于測定BOD值的儀器,具有操作簡便、測量準確等優點。本文將詳細介紹BOD測定儀的應用領域,并深入闡述其使用方法,旨在幫助用戶更好地掌握該儀器的操作技巧,提高水質檢測的效率和準確性。
在環境監測和水質分析領域,生化需氧量(BOD)是衡量水體中有機物污染程度的關鍵指標,而BOD測定儀則是獲取這一重要數據的關鍵設備。其測量結果的準確性直接關系到水質評估的科學性和污染治理措施的有效性。因此,做好BOD測定儀的日常維護工作至關重要。
生化需氧量(BOD)作為衡量水體中可生物降解有機物含量的關鍵指標,在環境監測、污水處理等領域具有至關重要的意義。BOD測定儀的測量精度直接影響著水質評估的準確性和可靠性,因此,探尋提升BOD測定儀測量精度的方法具有迫切的現實需求。
在水資源保護和水環境治理中,生化需氧量(BOD)是衡量水體中有機污染物被微生物分解所需氧氣量的關鍵指標,它直接反映了水體受有機物污染的程度。BOD測定儀作為專門用于測定BOD值的儀器,憑借其獨特的技術特點和顯著優勢,在水質監測領域發揮著至關重要的作用。
BOD反映了水體受有機物污染的程度,是水質評價的重要參數之一。BOD測定儀通過模擬自然界中有機物的生物降解過程,測定水樣在一定條件下微生物分解有機物所消耗的溶解氧量,從而得出BOD值。但在實際測定過程中,多種因素可能會干擾測定結果,導致準確度下降。因此,了解這些影響因素并采取相應措施加以控制,對于獲得可靠的BOD測定數據至關重要。
生化需氧量(BOD)是衡量水體中可生物降解有機物含量的關鍵指標,對評估水體污染程度及污水處理效果意義重大。BOD測定儀作為專門用于測定BOD值的設備,在環境監測、污水處理等領域應用廣泛。本文詳細闡述了BOD測定儀的主要特點,包括高精度與準確性、自動化與智能化、多參數監測、便攜性與靈活性等,并介紹了其使用方法,涵蓋使用前的準備、操作步驟以及注意事項,旨在幫助用戶更好地了解和使用BOD測定儀。
BOD(生化需氧量)作為評估水體有機污染程度的核心指標,反映了微生物分解水中有機物時消耗的溶解氧量。BOD測定儀作為獲取該數據的關鍵設備,其規范使用與科學維護直接決定監測結果的準確性和設備壽命。本文將從使用前準備、操作流程到維護細節,全方位解析BOD測定儀的核心要點。
在水質監測工作中,生化需氧量(BOD)是衡量水體中有機物污染程度的關鍵指標,BOD測定儀則是獲取這一重要數據的關鍵設備。然而,水質樣品特性的多樣性會顯著影響BOD測定儀的維護周期。深入了解這種影響,有助于制定合理的維護計劃,保障儀器的穩定運行和測量結果的準確性。
隨著工業化和城市化的快速發展,水體污染問題日益嚴峻,對水質進行準確監測成為環境保護和水資源管理的重要任務。BOD作為反映水體受有機物污染程度的核心指標,其測定結果的準確性至關重要。BOD測定儀通過模擬自然界中有機物的生物降解過程,測量水樣在一定條件下微生物分解有機物所消耗的溶解氧量,從而得出BOD值。然而,由于儀器本身的精度、穩定性以及環境因素等的影響,BOD測定儀的性能可能會發生變化。因此,定期對BOD測定儀進行性能檢定,是保證其測量結果準確可靠的重要手段。